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We consider the many-body ground state and elementary excitations of the Matsubara-Matsuda cell 
model, which can be interpreted as a first approximation to Siegert's exact but untractable operator algebra 
for hard-core boson fields. The model has unphysical aspects, but allows treatment of some many-body 
effects of the interaction. It represents the hard core by restricting cell occupation numbers to < 1 , which 
changes the algebra from Bose to Pauli type; kinetic energy and attraction appear as interactions between 
nearest-neighbor cell pseudospins, equivalent to a Heisenberg ferromagnet with anisotropy in pseudospin 
space. Our treatment, valid for scattering length/0>0, splits the Hamiltonian into an isotropic "unper-
turbed" part Ho, describing a system with hard core plus attraction of strength making /o = 0, and AH\, 
consisting of the attraction's deviation from this strength, the parameter A > 0 giving the magnitude of this 
(repulsive) deviation. The exact ground state of H0, for any density, is the state symmetric in all pseudospins, 
with the appropriate eigenvalue of the total pseudospin component 5 ( 3 ) which measures N. These states 
exhibit what corresponds to "incomplete Bose-Einstein condensation," the "excluded volume" effect of the 
hard-core constraint producing relative depletion £o of the condensate, proportional to p. Exact single 
excitations of Ho are density fluctuations pk with, however, free particle-like excitation spectrum, the 
ground-state energy being density-independent. Relaxing the restriction to eigenstates of N permits defini­
tion, by rotation of the total pseudospin from the vacuum, of a quasiparticle vacuum and operators, for any 
mean density. These serve as starting points for treating the full Hamiltonian by the equations-of-motion 
method in the random-phase approximation. The excitation spectrum is now phonon-like for small k, with 
s~(pA)112. /o being expressible exactly in terms of A, Eo/N can be written in terms of /o, p, and £o> self-
consistent in the RPA to order /0

5/2 .In the low-density limit, £o —» 0, there results the well-known expansion 
in (p/o3), but there are higher density corrections including a term ^p/o(p/o3)1/3£o2/3, due to the strong 
interaction included in the unperturbed many-body ground state. 

1. INTRODUCTION; NATURE OF THE MODEL 

WE consider the ground state and elementary exci­
tations of a simple "pseudospin" model which 

embodies some characteristics of a many-body Bose 
system with hard core plus attractive interaction. The 
model, which has been used previously by Matsubara 
and Matsuda1 for treating the X transition in liquid 
helium, has some obviously nonphysical features (pri­
marily an artificial "band" structure due to the use of 
lattice quantization, resulting in anisotropy of and a 
quasimomentum cutoff in the excitation spectrum). 
However, it is possible in this model to treat certain 
aspects of the strong short-range interaction exactly, 
in zero order, and, for reasons to be outlined presently, 
we believe that the properties of the model may be of 
interest for a better understanding of the physical 
many-body Bose system. 

As has been pointed out by Siegert,2 the presence of a 
hard-core interaction profoundly modifies the structure 
of the field description of the many-body Bose system: 
There is no longer a unitary transformation from a rep­
resentation in terms of free particle states (or operators) 
to one in terms of the eigenstates of the interacting 
system, so that a perturbation treatment starting from 
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2 A. J. F. Siegert, Phys. Rev. 116, 1057 (1959). 
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the noninteracting system, is not, strictly, possible at 
all. Of course, for an actual system such as liquid 
helium, one need not use the idealization of a com­
pletely impenetrable core. Nevertheless, the expecta­
tion of a profound qualitative effect of the strong 
short-range repulsion remains. For a one-dimensional 
system of hard-core bosons one knows that the prop­
erties are very different from the free-particle (or 
weak-repulsion) case, the energy spectrum and space 
correlations being identical with those of the correspond­
ing fermion system.3 In three dimensions the effects of 
the hard core are probably not quite as drastic. In the 
low-density limit it was shown by Lee, Huang, and 
Yang4 and by Brueckner and Sawada5 that the hard-core 
effects may be incorporated into the basic Bogoliubov6 

theory of the weakly nonideal Bose gas by treating the 
two-particle scattering with sufficient accuracy. How­
ever, in contrast to the fermion case where the statistics 
itself tends to suppress the many-particle effects of the 
short-range repulsion, there is no reason to suppose that 
in the boson case a pair approximation is at all adequate 
except in the low-density limit. On the contrary, e.g., 

3 M. Girardeau, J. Math. Phys. 1, 516 (1960). In the pseudospin 
model these results follow immediately by applying a Klein trans­
formation [K. Baumann and R. Sexl, Nucl. Phys. 26, 117 (1961); 
M. Bolsterli, Phys. Rev. 122, 1946 (1961)] to the pseudospin 
operators. R. T. Whitlock, Western Reserve University disserta­
tion, 1963, and T. D. Schultz, J. Math. Phys. 4, 666 (1963). 

4 T . D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1135 
(1957). 

5 K. A. Brueckner and K. Sawada, Phys. Rev. 106, 1117, 1128 
(1957). 

6 N . N. Bogoliubov, J. Phys. U.S.S.R. 11, 23 (1947). 



2410 R . ' T . W H I T L O C K A N D P . R . Z I L S E L 

the Green's function treatment of Beliaev7 shows clearly 
how the Bose condensation enhances the contributions 
of three-particle (and higher) scattering amplitudes. 
Thus, it would be highly desirable, if one knew how, to 
work in a representation which includes the essential 
many-body effects of the hard core from the start. 

Now Siegert's2 work shows how the hard-core part of 
the interaction, instead of being treated as the limit of 
a repulsive potential in the Hamiltonian, may be de­
scribed by algebraic relations between the field opera­
tors which follow from the basic constraint. 

^( r)^(r')==0 for | r - r ' | < a , 

where a is the hard-core diameter. These algebraic rela­
tions amount to a nonlocal g-number modification of 
the basic commutator E^CO^CO] a n d appear to be 
highly untractable in their exact form. However they 
suggest, as a first approximation, a simplification which 
is precisely our model as follows: 

Algebra of the Model 

We divide the volume 12 of the system into M cubical 
cells of size d3, 

Q=Md*, (1.1) 

where d corresponds to the hard-core diameter (eventu­
ally we are of course interested in the limit 0, M-+po, 
with d fixed), and define field amplitudes and occupa­
tion numbers for each cell: 

» i=* tyy ; ^ o P = L y % , 0 = 1 , - - - , M ) . (1.2) 

2VoP is the total particle number operator. We have, as 
usual for a discrete set of Bose operators, 

DMv]=0; DMi]=iM*, (1-3) 

but introduce the hard-core constraint approximately 
by limiting the eigenvalues of the n3- to 0 and 1, i.e., 

* / = 0 , » / = n y . (1.4) 

This, together with (1.3), implies the basic commuta­
tion relation 

[ * * * / ] = (l-2n,)fc.y. (1.5) 

The algebra of the model, as defined by (1.2)—(1.5), is 
equivalent to that of a set of Pauli operators: If we de­
fine "pseudospin" operators for each cell by 

* / » = * , . + * / , <r/» = i (* /_ , fc ) , (r/3) = 1 _ 2 ^ . (1.6) 

the Vj satisfy the standard relations for a set of inde­
pendent Pauli spins: 

,/«>*= 1 ( a = 1,2,3); 

er/«)<r/0 = iaj^ (a,/3/y, cyclic); (1.7) 

7 S. T. Beliaev, Zh. Eksperim. i Teor. Fiz. 34, 417, 433 (1958) 
[translation: Soviet Phys.— JETP 7, 289, 299 (1958)]; see also 
N. M. Hugenholtz and D. Pines, Phys. Rev. 116, 489 (1959). 

Hamiltonian 

The Hamiltonian to be used in the cell approximation 
is to some extent undetermined. The simplest choice, 
following Matsubara and Matsuda, is to replace the 
continuum kinetic energy operator by its finite-difference 
approximation 

T= (fi2/2m) J ( v * + ) - (y*)<Pr-+ (fi2/2md2) 

XE«/> ( * / - * / ) ( * * - * / ) , 

where (ij) stands for nearest-neighbor pairs in the cubic 
lattice space (each cell has 6 nearest neighbors). 
Similarly, the potential energy becomes 

The V{j involve only the attractive part of the interac­
tion. For reasons of computational simplicity we make 
the further nonessential simplification of taking v# to be 
zero for all except nearest-neighbor cells, where it takes 
the value — v. Thus, we have 

H= (W/tnd2){3Nop-± E W>(^Vi+^Vy)} 
— vj^u^mnj, (1.8) 

and, of course, 
[ iVo P )ff]=0. (1.9) 

To show explicity the effect of the hard-core con­
straint, it is convenient to express H partly in terms of 
the pseudospin operators (1.6). One has, for ij*j, 

so that 

(wdy&2)#=£<;,•> K i - f f f ^ + i E ^ ) »»»; 
= Ho+AHl9 (1.10) 

with 
A = l-v(md2/fi2). (1.11) 

In the following we shall express energies in units of 
W/md2. 

In the cell approximation the drastic effects of the 
hard-core interaction thus appear in a simple intuitive 
form. In particular, there exists, in the hard-core case, 
a group of simple canonical transformations—the 
pseudospin rotations—which mix field amplitudes 
(o-y(1) and cr/2)) and particle densities (o-/3)). This has 
consequences which are basic to the interest of the 
model: 

(1) The part Ho of the Hamiltonian—corresponding 
to the isotropic Heisenberg ferromagnet—being in­
variant under uniform rotation of the pseudospins, one 
can obtain a degenerate many-particle ground state of 
Ho for any mean density (N)/ti<d~3 by such a rotation, 
Eqs. (2.23)-(2.25), from the vacuum (which corre­
sponds to all the pseudospins "up")- This "unperturbed 
quasiparticle vacuum" takes the place of the Bose-
condensed free-particle ground state as the starting 
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point of a perturbation treatment, the long-range order 
appearing as pseudospin alignment. There is no need to 
assume the persistence of Bose-Einstein condensation in 
the presence of the hard-core interaction at finite densi­
ties, though we shall see (Sec. 2) that something like a 
Bose-Einstein condensation does, in fact, persist. Note 
that the "unperturbed" system, described by Ho, in­
cludes the hard-core interaction plus a "square-well" 
attraction of depth n2/md2 between particles in adjacent 
cells. As has been shown by Dyson8 for spin waves9 in 
the isotropic Heisenberg ferromagnet, this corresponds 
to zero scattering length for long-wavelength particles. 
Because of the "isotropy" of Ho it also corresponds to 
zero scattering length for long-wavelength quasi-
particles at any density. The perturbation parameter A, 
Eq. (1.11), measures the deviation of the attractive 
interaction from this unperturbed value. As in the treat­
ments starting from a Bose-condensed free-particle 
state,4-7 the present treatment starting from a homo­
geneous ground state of Ho is valid only for positive 
scattering length,10 i.e., for A>0. 

Since both Ho and AHi (for A >0) are positive semi-
definite operators this means that, with the simple 
form of the Hamiltonian we are using, the pseudospin 
model cannot describe a "liquid" many-body bound 
state. This is not, however, an inherent limitation of the 
model, but could be remedied by including a longer 
range part in the attraction vy. 

(2) Because of the mixing of amplitudes and densities 
by the pseudospin rotation from the vacuum, the quasi-
particle excitations at finite density—corresponding to 
spin-wave excitations from a "rotated" ferromagnetic 
ground state—explicitly involve collective density fluc­
tuations. Thus, because of the pseudospin algebra im­
posed by the hard-core constraint, the well-known 
density fluctuation character of the elementary excita­
tions in the interacting Bose system emerges in the 
present model as the consequence of a simple canonical 
transformation. In the unperturbed system the density 
fluctuations have a free particle-like energy spectrum, 
since the ground state has infinite compressibility (its 
energy is density-independent), just as in the ideal Bose 
gas. The characteristic phonon spectrum emerges in the 
presence of the perturbing Hamiltonian. 

The many-body ground state and singly excited states 
of the isotropic Hamiltonian Ho are treated in Sec. 2. 

It might appear from the preceding discussion that 
the presence of a hard core in the interaction may actu­
ally provide a conceptual simplification of the many-
body Bose problem. This may be true, but only in part. 
The advantage of being able to start from an "unper-

8 F . J. Dyson, Phys. Rev. 102, 1217, 1230 (1956). 
9 F . Bloch, Z. Physik 61, 206 (1930); T. Holstein and H. 

Primakoff, Phys. Rev. 58, 1098 (1940). 
10 For A <0, in the limit Q, N—>«> where one can neglect 

surface effects, one easily sees that the true many-particle ground 
state of the Hamiltonian (1.10) is inhomogeneous, consisting of a 
"crystal" of maximum density {pd? — l) and volume Nds, with 
binding energy per particle 3A, the rest of the volume being empty. 
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turbed" ground state and "elementary excitations," 
which are much closer to those of the complete Hamil­
tonian than the usual free-particle states, is paid for in 
the present model with the formidable complications 
which the pseudospin algebra imposes on the formula­
tion of a systematic perturbation procedure. These 
complications are well known in the theory of ferro­
magnetic spin waves. A detailed discussion for the iso­
tropic case is given by Dyson.8 

Because of these complications we confine our treat­
ment of the full Hamiltonian, in Sec. 3, to an evaluation 
of the ground-state energy and of the elementary excita­
tion spectrum by the equation-of-motion method in the 
random-phase approximation,11 which is equivalent to 
the lowest order decoupling approximation in a Green's 
function treatment.12 We find that this approximation 
gives an expansion for the ground-state energy in terms 
of the perturbation parameter A, which is self-consistent 
to order A512 [Eq. (3.32)]. In the low-density limit this 
expansion, when expressed in terms of the scattering 
length fo [Eq. (3.34)], agrees with the well-known hard-
sphere result of Lee, Huang, and Yang.4 However, there 
is a higher density correction which arises from the fact 
that the unperturbed Hamiltonian, even though it has 
zero scattering length and zero TV-particle ground-state 
energy, nevertheless has a ground-state wave function 
which at finite densities differs essentially from the com­
pletely Bose-condensed free-particle ground state (see 
Sec. 2). 

Quasimomentum Representation 

We impose periodic boundary conditions and define 
the Fourier transforms of the local field operators in the 
usual way by 

J^Jf-^Ey^expEA-ry], 
6 k =Jl f - 1 / 2 Ey^exp[- ikTy] , 

where the tj are the lattice vectors of the cell centers, and 
the k range over the first zone of the reciprocal lattice. 
Similarly, 

pk=M~1 X)y nj exp[—ik-r/]; p-k=Pkf. (1.13) 

Note the normalization in (1.13), which is chosen to 
make po the mean cell occupation number. Because of 
the hard-core constraint (1.4) the amplitudes for dif­
ferent k are not independent. One has 

I k W i - k = 0 ; LkPkPi-k=pi (all 1). (1.14) 

11 See, e.g., D. Pines, The Many-Body Problem (W. A. Benjamin, 
Inc., New York, 1961). 

12 N. N. Bogoliubov and S. V. Tyablikov, Dokl. Akad. Nauk 
SSSR 126, 53 (1959) [translation: Soviet Phys.—Dokl. 4, 
589 (1959)]; R. A. Tahir-Kheli and D. Ter Haar, Phys. Rev. 127, 
88, 95 (1962). 
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The commutation relations are 

KkjPd^Af-^k+l , 
and 

[Mi t]=B«k.r-2P k_ l . (1.16) 

Equations (1.15) are as usual for Bose operators, but 
(1.14) and (1.16) reflect the hard-core constraint. 

Using (1.14) for 1=0, we can write the Hamiltonian 
in the form 

firo=Ek{|(7o~70&k+&k-^7kPktPk}, (1.17) 

AH^\MA Ek7kPkfPk, 

where 
7k=Lsexp(;k-5); (1.18) 

5 is a nearest-neighbor lattice vector, and the sum over 
5 is over the six nearest neighbors of a given lattice cell. 
Note that 70=6 and 

Z k 7 k = 0 . (1.180 

The property (1.18') of the coefficients of the pkW 
terms in the Hamiltonian is important. It reflects the 
fact that vu=0 and would continue to hold if we re­
laxed the limitation to nearest-neighbor attraction. 

To avoid misunderstanding it should be stressed 
again that, because of the pseudospin algebra of the 
field operators, the "unperturbed" Hamiltonian H0 

must contain "interaction" terms (pkW) as well as 
''kinetic-energy" terms (b^b^). For the same reason, 
the interpretation of the b^,b^ as creation and destruc­
tion operators of particles with quasimomentum k must 
be handled with caution. It is true that 

Nov=Mpo=j:^v^ ^ = 6 ^ , (1.19) 

and that 
t>k,2\roP]=0, (1.20) 

[&k^op]=M[&k,p0]=Z>k. (1.21) 

Thus, the Z>k (&k+) do indeed destroy (create) a particle. 
However, because of (1.16), neither [6k,vj nor [vk,vi] 
is zero for k ^ l . Thus, except for N=0 or 1, an eigenstate 
of Nop can be at most an eigenstate of only one v*. Be­
cause of the incorporation of the hard-core interaction 
into the kinematics there are no "free" many-particle 
states in this mode. Nevertheless, the "occupation 
number" vo of the zero quasimomentum level turns out 
to be an important parameter for describing the ground-
state properties of the system. 

It should be pointed out that Matsubara and 
Matsuda,1 who were interested mainly in the statistical 
mechanics of the X transition, arrived at the pseudospin 
model from a starting point different from ours. They 
generalized the classical "lattice-gas" model, familiar 
in statistical mechanics, to include the effects of the 
quantum-mechanical zero-point motion. The relation 

of the classical lattice-gas model to the pseudospin model 
is, in fact, the same as that of the Ising model to the 
Heisenberg ferromagnet. 

Finally, we note that a pseudospin representation 
which in some respects resembles the present one has 
been used by Anderson and by Wada, Takano, and 
Fukuda13 to treat the BCS theory of superconductivity. 
There the pseudospin operators represent the bound 
Cooper electron pairs. The constraint which arises from 
the hard-core interaction for the Bose system comes 
from the exclusion principle for the electron-pair system. 
However, there are important differences between the 
two pseudospin models. The Anderson pseudospins are 
defined in momentum space, and the BCS interaction 
between them in momentum space is long range, so 
that the elementary excitations in a "molecular field" 
approximation correspond to "local" (in momentum 
space) spin flips, giving the energy gap for quasiparticle 
excitations in superconductors. In the hard-core Bose 
model the pseudospins are local in coordinate space and 
the interaction between them is short range, so that the 
elementary excitations correspond to collective non­
local spin deviations, i.e., "pseudospin waves," with no 
energy gap. It seems interesting that the frequently 
observed similarities between superconductivity and 
superfluidity,14 together with their characteristic dif­
ferences, should here crop up again in a new context. 

2. UNPERTURBED HAMILTONIAN; iV-PARTICLE 
GROUND STATE AND ELEMENTARY 

EXCITATIONS 

We begin by determining the exact ground state 
<£0(A0 of the unperturbed system, described by Ho, for 
a given number of particles. It is conveninent to con­
sider Ho in the pseudospin form, 

ffo=t£<*>(l-<*-<r;), (1.100 

and to define the total pseudospin operator 

S = § X > y , (2.1) 

which, from (1.6) and (1.12), has components 

5<« = |M1'W+&o); 
S(» = $afi/*(60t_i0) ; (2.2) 

Note that 

S2=iWV0+S(3)GS(3)+l) (2.3) 

with Vk denned in (1.19). Since 

[Ho,S]=0, (2.4) 

we can consider simultaneous eigenstates of #o,S(3) 

13 P. W. Anderson, Phys. Rev. 112, 1900 (1958); Y. Wada, F. 
Takano, and N. Fukuda, Progr. Theoret. Phys. (Kyoto) 19, 597 
(1958). See also K. Baumann, G. Eder, R. Sexl, and W. Thirring, 
Ann. Phys. (N. Y.) 16, 14 (1961). 

14 See F. London, Superfluids (John Wiley & Sons, Inc., New 
York, 1950), Vol. I ; (1954), Vol. II . 
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(i.e., JVop), and S2. Because of (2.3) these will be eigen-
states of VQ as well. 

In terms of the spin picture the nature of $Q(N) is 
determined easily. Because of the isotropy of Ho, its 
eigenvalues are independent of the number of particles; 
the lowest eigenvalue, zero, belongs to those states which 
are symmetric in all nearest-neighbor spin pairs. But, 
since the interchange of any two spins can be accom­
plished by a sequence of nearest-neighbor spin inter­
changes, $o(AO must be symmetric in all spins, that is, 
S—\M. The physical vacuum itself is the "ferromag­
netic" ground state in which all M spins are "up" so 
that 

#o(0)= |0>=|5=iJf ; S<8> = Jilf>. (2.5) 

$o(N) is obtained from (2.5) by A -̂fold application of 
the S(3)-lowering operator 60

+. The unperturbed A'-par-
ticle ground state is, then, 

$0(N)=\S=W; 
SW = ±M-N) = Dom(bot)N\0)y (2.6) 

or, in terms of the local operators, 

$0(A0 = M-N**DQw (Ei W)N 10), (2.60 

where the normalization is 

D0™ = MN>*iN! (MAT)1/2]-X . (2.7) 

<£>o(iV) satisfies 

The physical nature of 3>o(iV) is easily seen from the 
form (2.6'). Because of the hard-core constraint, Eq. 
(1.4), $o(N) is a symmetric sum of (N

M) product states 
in each of which N cells are singly occupied (spins down) 
and M-N cells are vacant (spins up). Denoting expec­
tation values in $o(N) by ( )o, the mean occupation 
number for any cell is 

(%>o=Po=pd3, all j , (2.9) 

with p=Ar/S2, the mean number density. There is no 
density correlation between cells, so that 

Wm>o~(pd3)2, tem. (2.10) 

The expectation value of the perturbing Hamiltonian is 

W1^A(H1)o=A T,M(n<n,)o=hyoANpd*. (2.11) 

"Bose-Einstein Condensation" 

From (2.3), $o(N) is also an eigenstate of the "num­
ber of particles with zero quasimomentum": 

v0$0(N) = N[l- (N- l)/M]$0(iV) 

To calculate the mean values of the other yk, we first 
express j>k in terms of the local operators 

vk= Nov/M+M'1 £ w fatyi exp[ik- fo-i*)]. 

From the nature of $o(N) one sees that (̂ jty;)o(»vy) is 
independent of i and j . Thus, 

(^k)o=p^3— (^iVt)o(i^i) 

= pi8-l{<cr<-try>o-<(l-2»<)(l-2ny)>o}W (2.13) 
~(pJ3)2, M O . 

In the limit N,M —•> °° we have 

(vo)o/N-+l-pd*, 

(vk)o/N->0, M O . 

The depletion £0 of the free-particle ground state in the 
ground state of HQ is 

£o=X>o(vk>o/Ar -> pd*. (2.14) 

Thus, for all pdz<\, the unperturbed ground state ex­
hibits ' 'Bose-Einstein condensation" in quasimomentum 
space. The depletion is clearly an "excluded-volume'' 
effect of the hard-core constraint (1.4). 

Elementary Excitations 

We now construct eigenstates of Ho containing a single 
elementary excitation. In the spin picture an excitation 
is a "pseudospin wave" in which S is lowered by one 
unit from its ground-state value \M, while 5(3) is main­
tained at \M— N. Consider the normalized states 
(MO) 

* k W = D k<% k
t (^o+ )^ |0)-p k^oW, (2.15) 

where the density fluctuation operator pk
f is defined by 

(1.13) and Z)k
(iV) is the normalization which we sup­

press below for simplicity. These states are orthogonal 
to the ground state and to each other, 

<$o(AOI<^W>=0, MO, 
<*kWI*i(#)H8k.i, fe*0. { ' } 

Since pk
f commutes with S^\ the states (2.15) are 

eigenstates of 5(3) with eigenvalue \M—N. To show 
that these states are also eigenstates of Ho, we write 
first, 

PkW)*|0>= (N/M)bJ(bJ)»-i\0), (2.17) 

which results by using the commutator (1.15) a total 
of N times so as to commute pk

f through (b<?)N to act 
on the vacuum. Because Ho and &k

+ commute with 
6of, HQ operating on (2.17) yields 

#opk
f MN10)= (N/M) (bJ)N-lZH0,bJl 10). 

Expressing Ho in the form (1.17), one finds for this 
last commutator 

[ # 0 , ^ ] = €k°&k++2 Ei(ek_i°- eiWpk-i1, 
with 

ek°=i(7o-7k). (2.18) 
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Combining (2.15), (2.17), and (2.18), we obtain 

HQ$*(N) = e^k(N). (2.19) 

In general, the energy ek° of the excitation generated 
by pkf is anisotropic in k due to the effect of the "lattice 
structure" but, for wavelengths long compared to the 
lattice spacing d, the energy spectrum is isotropic and 
free-particle-like, reflecting the fact that the ground 
state has infinite compressibility: 

€ k
0 ~ f W , JW«1. (2.20) 

(In ordinary units e^°^h2k2/2m.) In $k(A0 one par­
ticle has been excited from the condensate; 

v&*(N) = £N(l-pd*)-llp*(N), k ^ O . (2.21) 

Thus, using (2.3), 

S*k(iV) = i M ( J M - l ) $ k ( i V ) , k^O, (2.22) 

so that in our previous notation 

$ k ( t f ) = | S = i J l f - l ; s^ = W-N). (2.150 

As is well known in spin-wave theory, states contain­
ing more than one spin-wave excitation are not orthogo­
nal to each other (kinetmatical interaction) and Ho is 
not diagonal in such states, i.e., the excitations scatter 
one another (dynamical interaction). For long wave­
lengths this scattering is very weak and Ho is approxi­
mately diagonal in such states. A complete discussion is 
given by Dyson8 for isotropic Heisenberg exchange. 
With anisotropy present the scattering is not so weak, 
the two-body scattering length at zero energy being 
finite (see Appendix II). 

Unperturbed Quasiparticle Vacuum 

For the purpose of treating the full Hamiltonian 
(Sec. 3) it is convenient, as usual, to relax the restric­
tion to eigenstates of N (i.e., of S (3)). As was explained 
in the Introduction, this allows, in the present model, 
the use of particularly simple many-body eigenstates 
of Ho: Consider a uniform rotation of the pseudospins 
about the 2-axis through an angle 0. 

R2(d) = exp[-idS™l=Uj(cosid--i<rjw sin|0). (2.23) 

The state obtained from the vacuum by this transfor­
mation is 

\e)=R2(6) |O>=IL(cos§0+ifct sin|0) |0>. (2.24) 

Denoting axes in the rotated coordinate systems by 
x, y, z, the relations between the original and trans­
formed Pauli operators are 

0-/D = (cos0)ovx— (sin0)cr/; 

e r / 2 W / ; (2.25) 

o-/3) = (cos0)a/+ (sm0)oy. 

In |0) all the pseudospins are aligned along the z 
direction; 

cr/|0>= (R2a^R2^)R2\0)= |0>, (2.26) 

and, since Ho and S2 are invariant under uniform 
rotation, 

Ho\6)=0, 

S 2 | 0 > = W ( | M + 1 ) | 0 > . ( 2*2 7 ) 

However, (2.24) is not an eigenstate of 6,(3) and so of 
the number of particles. (The zero-temperature chemi­
cal potential of the unperturbed system is obviously 
zero and so need not be introduced.) The mean value of 
S™ is 

(S(8)>*=£Af cos0. (2.28) 

Then, the mean number of particles will be described 
correctly if 

c o s 0 = l - 2 p o . (2.29) 

A simple relationship exists between <£>o(iV) and |0), 
which is degenerate with all those states 10 \<j>) which can 
be generated by rotating |0) about the 3-direction 
through azimuthal angles 0,0 <cj><2ir. This "cone de­
generacy" persists in the full Hamiltonian which, 
though not isotropic, still commutes with iVop, and thus 
with <5(3). As is well known (cf., e.g., Thirring et a/.13), 
$o(N) can be written as a superposition of the states 
|0;0). The state |0), itself, is a superposition of ground 
states corresponding to different eigenvalues of iVop as 
can be seen by expanding the product in (2.24): 

M (tan§0)' 
|0>= (cosi0)^ £ ( £ / W | 0 > . (2.240 

i=o l\ 

Thus, except for normalization, §o{N) is the projection 
of |0) onto the subspace Nov—N: 

In the limit M,N -> <x> the distribution of N in (2.24') 

is sharply peaked at the mean value. One has 

(AiV)0
2=(iVop2)0-(iVopV=(^ ( 3 ) 2)a-(^)0

2 . 

Using (2.29), a simple calculation gives in the limit 

(ANY^M s i n 2 0 = N ( l - p d 3 ) , 

so the mean fluctuation, 

AN/N= l(l-pd*)/Nj'2, (2.31) 

vanishes as N—•» <x> and |0) is a good unperturbed 
many-particle ground state for the infinite system. 

The chief virtue of the uniform rotation (2.23) lies 
in the fact that, for any density, 10) is the vacuum for 
the transformed creation, destruction operators 

^ t = 222(0)^.tu ri(^) = J ^ - ^ ^ y ) , (2.32) 
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with Fourier transforms 

CV=#2(6l)&kt.R2-i(0) 
= M"1'2 £y 0yt exp[& TJ] , (2.32') 

C ^ M - 1 ' 2 Zi<t>i expC-ik-rJ. 

For, from the unitary property of the transformation, 

<^-|0>=O, a l i i ; 

Ck |0)=O, allk. 
(2.33) 

Since Ho is invariant under the transformation and the 
commutation relations between the Ck, CV have the 
same form as those between the bk, b*.\ the state 

Ckt|0)=|0;k> (2.34) 

containing one quasiparticle created by CV is an eigen-
state of Ho: 

#o|0;kHek°|0;k>. (2.35) 

Thus, the Ckt acting on |0) create ''unperturbed quasi-
particles" having the same energy spectrum as the 
density fluctuations pkt acting on <J>0(iV). These quasi-
particles are linear combinations of particles, holes, 
and density fluctuations, as can be seen by using (2.25) 
in (2.32), (2.320: 

* i * = J ( l + c o s ^ W - J ( l - C o ^ y + | s in0 ( l -2^%) , 

or 

Ckt=i(l+cos0)&kt-|(l-cos0)&_k 

+W112 sin0(5k,o-2pkt). (2.36) 

3. FULL HAMILTONIAN; RANDOM-PHASE 
APPROXIMATION 

To relax the restriction to eigenstates of Nov we intro­
duce the chemical potential /z in the usual way, replac­
ing H, Eq. (1.10), by 

H,^E-lxN0^H,+AH1-nN0V. (3.1) 

Remembering the cyclindrical symmetry of Hf about 
the 3-direction, we look for a homogeneous ground 
state tyo(A,ij) of Hr, analogous to the unperturbed 
quasiparticle vacuum |0), having a finite net "mag­
netization" a per cell in some direction z in the 1-3 
plane. Accordingly, we work with the rotated spin 
operators (2.25), in terms of which Hf is given by 

^o=i I (y) ( l - f f i ' f f i ) , (3.2a) 

5 i = i l < « ) { l - (<Tix+<rj
x) sin0- (tn'+ffj*) cos0 

+<nx<rj* sin20+(r,V/ cos20 

+ (tf/o-/+ovW) cos0 sin0} , (3.2b) 

NoP= I E * ( l - ^ smB-n* cos0). (3.2c) 

We have 
( 0 / H 1 - 2 M - 1 Ek<CktCk)s=<r, (3.3a) 

<^>=<^> = 0, (3,3b) 

where ( ) denotes expectation values in &Q(A,H) and, 
therefore, 

po=iV/M=|(l-<rcosd). (3.4) 

The parameters 0 and <x are to be determined self-
consistently. 

Exact Ground-State Properties 

The Heisenberg equations of motion for the pseudo-
spin operators are 

-\-\A<jjy £s(cos0—aj+8z cos2d—crj+8
x sin0 cos0) 

—/Z0-/COS0; (3.5a) 

+%A{<TJZ ^2$(smB—(rj+sx sin20—aj+8
z sin0 cos0) 

— af J28(C0^~(T3+8Z cos26—aj+8x sin0 cos0)} 
—fi(crjz sin0— af cos0); (3.5b) 

— \A<TJV X^(sin0— aj+s* sm26—(Tj+8z sin0 cos0) 
—H<rjy sind; (3.5c) 

the sums over 5 range over the 6 nearest neighbors of j . 
Since ̂ o is an eigenstate of H', it follows that ([F,H'2 )=0 
for any operator F. In particular, (daj/dt)=0. Let 

cr,-*=<r+ry, (3.6) 

where (ry)=0 by definition. Taking the expectation 
value of (3.5b) and using (3.4), we find the exact ex­
pression for the chemical potential: 

fi=A {YOPO+ (cos6/2a)\3^b(aj
x<Tj+8x)—yE,8(TjTj+8)~] 

+ (cos20/2(7 sirtf)£8<Ty(r*8*)}. (3.7) 

With this relation for /x, the expectation values of the 
other two equations of motion both yield 

cos0 Es(0-/T;+5}+sin0 L 5(̂ /07+5*} 

= E8<<r/2W8>>=0. 

From the chemical potential the ground-state energy 
E0 of #'+MiV oP can be obtained in the usual manner by 

E0(A ,N) = Mj 
Jo 

fjidpoy (constant^), (3.8) 

where the integration is performed at constant interac­
tion strength A. Alternatively, the ground-state energy 
can be obtained from the Pauli-Feynman theorem11 

Jo 
{Ex)dA , (constant N), (3.9) 

by integrating at constant N. Equation (3.9) holds be­
cause EQ(0,N) vanishes and 
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where EQ'(A,IX) is the eigenvalue of Ef in ^ 0 . Combin­
ing (3.3), (3.4), and (3.6), the exact expression for 
<Hi> is 

<#!>= hoNoPo+ (M/8)£s{(cr/(ry+8*> sin20 
+(TJTJ+&) cos2d+2(Tj<Tj+tx} sin0 cos0}. (3.10) 

We shall test the self-consistency of the random-phase 
approximation by comparing the results it gives in (3.8) 
and (3.9). 

Linearized Equations of Motion 

To evaluate the ground-state energy and excitation 
spectrum for the perturbed system, we adopt the 
random-phase approximation11 and linearize the equa­
tions of motion (3.5) about the state ^ 0 by using (3.3) 
and (3.4). In this approximation, equivalent to the spin-
wave approximation for a ferromagnet with anisotropic 
interaction, we find 

ft&jx**i(r(ya<rjv— X)s ov+s^+tr/ cos6(Ay0po—/*); (3.11a) 

ft&jV^o- sin^(^7opo—M)~2°'[Tooria?— (1—^4 sin20) 
X E s o-y+5aj]-o-yx cos6(Ayop0-n); (3.11b) 

Mj^—(Tjy sine(Ayopo—ix). (3.11c) 

The requirement that the expectation values of Eqs. 
(3.11) vanish now determines the zero-order chemical 
potential as 

HQ=Ayopo, (3.12) 

which is equivalent to the first-order perturbation re­
sult (2.11). From (3.12) we see that f j~0 , i.e., 77 is a 
second-order quantity. 

Upon taking Fourier transforms of (3.11) and using 
(3.12) and (2.32), (2.32'), we have 

^ k t ^ M ^ ^ C k t + i / T k C C k t + C - k ) } ; (3.13a) 

ftCk« -* r{«k 0 Ck+^7k(C k +C_ k t ) } , (3.13b) 

where 
/ s U sin20. (3.14) 

We note that these linearized equations of motion could 
be obtained from a reduced Hamiltonian of the 
Bogoliubov form,6 

Hred=i70^iVpo+Ek{€k
0CktCk 

+i /7kCCktC k +J(CkC-k+C_ k t c k t ) ] } , (3.15) 

if the Ck , Ckt satisfied the commutation relations 

[Ck ,CVt><r5k ,k , , (3.16) 

which are equivalent to approximating \jrjx,crj>v2 by 

[>y V i ' y > (l*f,*J'yl)= 2urd,^. (3.160 
Also, note that 

Ek7k[cktck+i(ckc_k+c_ktckt)] 
= J £y,« 0-/07+5*. (3.17) 

Equations (3.13), or equivalently #red, are brought 
into diagonal form by a linear transformation of the 
Bogoliubov type, which is, however, only approximately 
canonical since (3.16) is not exact: 

(3.18) 
C k = a k cosh(JXk)+o;_kt s inh( |Xk) , 

C k t = a k t cosh(JXk)+a_k sinh(JXk), 

with Xk= X_k, and 

Gak,ak'iQ«<r5k>k/. (3.19) 

The diagonalization condition is 

( 7 o - 7 k + / 7 k ) s inhX k+/7k coshXk=0, (3.20) 

which yields 

coshXk= (7o--7k+/7k)[(7o—7k+/7k) 2 

- ( / 7 k ) 2 ] " 1 / 2 , (3.21) 
sinhXk= _ / 7 k [ ( T o - 7 l r + / 7 k ) 2 ^ ( j 7 k ) i ] - i /« . 

The excitation energy for a "pseudospin wave" of wave 
vector k is given by 

*k= MXYO—yic+Jyk) co shX k +/7 k sinhXk] 
= K ( 7 o - 7 k + / 7 k ) 2 ~ (/7k)2]1 / 2 . (3.22) 

Note that in the random-phase approximation ek scales 
with the magnetization. This agrees with the lowest 
order decoupling result in a Green's function treat­
ment.12 However, as we shall see, the approximation is 
self-consistent only to the order in which the deviation 
of a from 1 can be neglected in the expressions (3.7) for 
jLt and (3.10) for Hi. For wavelengths long compared to 
the lattice spacing d/yk can be replaced by the isotropic 
expression 7k«7o— (kd)2; the energy spectrum then is 
linear in k as is characteristic of phonon excitations: 

€ k - » i c 7 ^ [ 2 / 7 o + ( l - 2 / ) ( ^ ) 2 ] 1 / 2 , ] W « 1 . (3.22') 

To calculate expectation values in ^0 in this approxi­
mation, we take 

(akai)= ( « k W ) = ( a k
t a i ) = 0 , (3.23a) 

whereas, from (3.19) 

(akQ!i1')==cr5k,i. (3.23b) 

< C k t C k ) = M c o s h X k - l ) , 

<CktC_kt>= <C_kCk>=Jo- sinhxk . 

Then, 

(3.24) 

Using (3.15), the correction to the first-order perturba­
tion result (2.11) for the ground-state energy is 

AE0=Eo-hoANpo~i £ k ( € k - | < r y o ) , (3.25) 

where we have used (1.18'). This correction is inherently 
negative for all positive A. From (3.17) and (3.24), we 
have 

M £8{<^*<r/+a*)«cr X)k 7k(coshXk+sinhXk) 

d /AE, 
= 4(7 

dA 
(3.26) 
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The last step results from differentiating (3.25) and 
using the diagonalization condition (3.20). The other 
terms in (3.7) and (3.10) are of higher order and cannot 
be evaluated correctly in the approximation using 
(3.16). Then, in this approximation, 

Mp, « MfiQ+M (cosO/2a)Y,s((rf<Tj+8x) 
d /AE0\ 

=MAyoPo+2A cos0— ; 
dJ\ a ) 

a sin20 d /AE0\ 
<tf 1>«|MToPo2+ 1 

2 dJ\ a / 

Thus, (3.8) and (3.9) are consistent with each other and 
with (3.25) in this approximation to (and only to) the 
order in which the deviation of a from unity can be 
neglected, since, for cs— 1, we have from (3.4) and (3.14), 

dpo=% sinddd, 

dJ=\ sin%L4+2A cosddpo. 

From (3.3) and (3.24), a is determined by 

(7-1(/) = M ~ 1 i ; k c o s h X k . (3.27) 

For kd<&l, coshXk behaves as k~l and, consequently, 
for a finite system (3.27) diverges and <r=0. This is due 
to the infinite fluctuations of the "spin wave" with 
k = 0 and means that our treatment cannot be used, as 
it stands, for a finite system. A similar situation arises 
in the spin-wave treatment of antiferromagnetism.15 

However, in the limit £2—* oo, the k-space summation 
may be replaced by an integral which converges in 
(two and) three dimensions (but diverges logarithmically 
in one dimension) because of the &-space volume ele­
ment. In Appendix I it is shown that for values of / 
in the range in which we are interested, 0 < / < l , a (J) 
satisfies 

l < o - x < 1.156, (3.28) 

where the lower (upper) limit of cr"1 corresponds to the 
lower (upper) limit of / . 

To ascertain the behavior of a near 7 = 0 , coshXk can 
be expanded in a Taylor series in / and integrated term 
by term everywhere except in the immediate neighbor­
hood of the &-space origin where a different procedure is 
needed as is shown in Appendix I. One gets 

0--!= (2v3"/7T2) /3 /2( l+2/)( l-2/)-2 

+ E (**/»!)/" , a o = l , <*i=0, (3.29) 
tt=0 

the half-integral power dependence being the contribu­
tion from the &-space origin. Then, to lowest order in / , 

cr«l~(2v3"/7r2)/3/2. (3.290 
15 P. W. Anderson, Phys. Rev. 86, 694 (1952). 

Ground-State Energy 

To determine the correction to the ground-state 
energy for small / we first write (3.25) in the form 

AE0/M=(yo/4:)aF(J), (3.25') 

with an obvious definition for F(J). After replacing the 
summation by integration, the behavior of F for small 
/ is calculated by the same procedure as was used for <r. 
(See Appendix I.) The expansion for F has the form 

F(J)= (16v3"/57r 2 )^ 2 ( l -2 / ) - 2 + £ (Cn/nl)Jn
y 

n=0 

C 0 = C i = 0 ; C 2 ~ - 0 . 5 1 6 , (3.30) 

where, again, the half-integral power dependence is the 
contribution from the &-space origin. By keeping terms 
in F through order J5/2, the ground-state energy as cal­
culated from (3.25') will be consistent with (3.8) and 
(3.9) through order A512, with <r= 1. Thus, 

^ ( / ) « - | i C 2 | / 2 + ( 1 6 v 5 / 5 7 r 2 ) / 5 / 2 . (3.30') 

Combining (3.4) and (3.14) we see that 

J**2AfxP(l-pcP), (3.31) 

to the order to which we are working (o-«l) . Finally, 
combining (3.25), (3.30'), and (3.31), and going over to 
ordinary energy units (i.e., multiplying by fi2/md2), we 
have, to order A5/2, 

E0/N^(3¥APd/m){l- \C2\A(l-Pd*)2 

+ (16v5/57r2)(2^)3/2(p^)1 /2(l-p^3)5 /2}. (3.32) 

The expression (3.32) for the ground-state energy 
may be cast into a more illuminating form which per­
mits comparison with other treatments, by expressing 
the unphysical model parameters A and d in terms of the 
zero-energy two-particle scattering length / 0 and the 
depletion parameter £0, Eq. (2.14), of the "Bose con­
densate" in the unperturbed ground state, /o can be 
calculated by the method used by Dyson to treat the 
scattering of two spin waves in the isotropic case.8 This 
is done in Appendix I I . The (exact) result is 

2 7 r / 0 = 3 ^ ( l + | C 2 M ) - 1 , (3.33) 

where |C2 |— 0.516 is the same numerical coefficient 
occurring in (3.30). Using (3.33) and 

i^pd\ (2.14) 

we have, to order /0
5/2, 

Eo/iV=(27r^2p/o/w){l+(128/157r1/2)(p/o3)1/2(l-^)5/2 

+ (47r |C2 | /3)(p/o3)1^o2 / 3(l- iSo)}. (3.34) 

Discussion 

In the low-density limit, where Jo ~> 0, Eq. (3.34), to 
the order of its validity, agrees exactly with the well-
known low-density expansion4,5,7 in terms of p/o3. How-
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ever, the last term (^/o2£o2/3) in (3.34) represents a 
higher density correction which has not appeared in 
other treatments. The nature of this correction, which 
originates from the A2 term in (3.32), can be understood 
as follows: 

The A2 term represents the second-order perturba­
tion energy W2 of the reduced Hamiltonian (3.15) act­
ing on the unperturbed quasiparticle vacuum |0). 
The intermediate states are Ck

tC_k t 10), so that 

W2= - \ Ek ,(i /7k)2(26k°)-1 - > - ( / 2 / 8 ) 0 ( 2 T T ) - 3 

Y k H Y o - T k ) - 1 ^ ^ ~ (J2/8)MyQ\C2 X 

[see Eq. (A6), Appendix I ] . In ordinary energy units, 
using (3.31) and (2.14), we thus have 

W2/N=-M2A2pd\C2\{l-^)2/m. (3.35) 

This is just the A2 term in (3.32). Similarly the term 
proportional to A in (3.32) is, of course, the first-order 
perturbation energy W\/N, Eq. (2.11). From (3.33) we 
have, to order A2> 

2<irfi2pf0/m « (3¥pd/m)A (1 - | C2 \A), 

which is (Wi+W2)/N for £0=0. 
Thus, in the limit £0—>0, no second-order term 

appears in the expansion of E0/N in terms of /o. This 
"cancellation" of the second-order perturbation contri­
bution is a well-known feature of the pseudopotential4 

and ^-matrix5 treatments of the dilute hard-core Bose 
system.11 I t is clear, however, that this cancellation can 
be complete only if the unperturbed many-body ground 
state is an independent-particle one, that is, if the per­
turbation represents the total interaction, since /o is 
a two-particle property, whereas W2 involves two-
particle excitations from a many-body ground state. 

In the present model the unperturbed ground state 
10) approaches the free-particle ground state only in the 
limit p —> 0. The many-body effects of the interaction in 
the unperturbed system (/o=/l = 0) are expressed by 
the Bose condensation depletion parameter £0 which, 
in the present model, is proportional to p and represents 
an excluded-volume effect of the hard-core constraint. 
In other treatments4 '7 the depletion is itself a perturba­
tion effect, proportional in lowest order to (p/o3)1/2. In 
this connection it should be pointed out that the pertur­
bation does produce a further depletion of the Bose 
condensate in the present model. One finds, to order 

{= 1 - (vo)/N~ £0+ (8/37T1/2) (p/o3)1 / 2(l- £o)3/2. (3.36) 

In the low-density limit, where £0 —* 0, this agrees with 
the result of Lee, Huang, and Yang.4 

The exact form of the term ~P/O(P/O3)1 / 3£O2 / 3 in the 
ground-state energy is, of course, determined by the 
specific properties of the pseudospin model. I t would 
seem, however, that a contribution of this kind should 

be present in general for a Bose system in which the 
hard-core repulsion plus a longer range attraction com­
bine to produce a small positive scattering length but 
strong many-body effects. 

I t is perhaps surprising that the crude pseudospin 
model, in spite of its obvious unphysical features, should 
in the simple random-phase approximation reproduce 
exactly the well-known low-density limit result for the 
ground-state energy of the hard-core Bose system. This, 
together with the fact that the model, again in a simple 
approximation, is able to describe rather well at least 
some features of the A transition in liquid helium,1 gives 
rise to the hope that refinement of the approach based 
on the kinematical treatment of the hard core may lead 
to a feasible method of treating the liquid He4 problem. 
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APPENDIX I 

Here we show how expressions (3.29') for a and (3.30') 
for F(J) are obtained. By using (3.21) for coshXk, re­
placing the &-space sum by an integral, and defining 

(Al) 
u}v,w=kxd,kyd,kzd, 

r = 7k/7o, 
(3.27) becomes 

<r-i(J)=(2ir)sj f f(l-r+JT) 

X [ (1 - T)2+2JT (1 - r ) ] - 1 ' 2 dudvdw. (A2) 

By the same procedure F(J) in (3.25') becomes 

F(J)=(2T)-* {[(i-r)2+2/r(i-r)]1/2-!} 

Xdudvdw. (A3) 

Consider (A2) first. For values of / in the range 0 < J< 1 
limits for the magnitude of a are easily established. Since 
the hyperbolic cosine is > 1 for all k, <r~l > 1 with equality 
being achieved at J = 0 . To determine the upper limit 
the integrand of (A2) can be rewritten as f(T) (1 — r2)~1/2 

with 

/(r)= (i_r+/r)(i+r)1/2(i-r+2/r)- -1/2 

Since - 1 < r < 1 and 0 < J< 1, one sees that 0 < f(T) < 1. 
I t follows that 

O - 1 ( / ) < ( 2 T T ) - 3 ( l - P ) - 1 ' 2 dudvdw, 
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or 
<r-l(J)<a-l(l)= 1.156, (A4) 

where we have used Anderson's15 evaluation of the 
integral cr_1(l). Hence, (3.28) follows. 

To find the behavior of a (J) near 7=0 , the integrand 
in (A2) can be expanded into a Taylor series in / and 
integrated term by term everywhere except in the 
immediate vicinity of the &-space origin, where T —> 1. 
But in that region one can certainly use the isotropic 
expression for T, 

r ~ l - r 2 / 6 , f 2 = = ^ 2 + Z J 2 + w 2 ) K < 1 

An integral over a small sphere of radius ro about the 
origin then takes the form 

Jo 
(2^i/2)-i / [>2 (J _ y ) + 6 / ] [ y + l2J/r,2~112 dr, 

Jo 

with »?= 1 — 2J. This integrates to 

(47ry/2)-1{(r!+m/Tj)1/2 

X[12 / -16 / ( l - / ) / „+f ( l - /> 2 ]}o r <>. 

Thus, the contribution from the origin is 

2^T-V*I2(1+2J) ( 1 - 2/)-2 . (A5) 

For 12 J/rj <ro2 the contribution from the upper limit 
can be absorbed into the Taylor series. Hence, (3.29) 
follows. One finds for the first two coefficients of the 
power series, ao=l, #i=0. Then, to order J3/2, (3.29') 
results. 

Following the same procedure used for <r, the behavior 
of (A3) near J=0 can be ascertained. The contribution 
from the &-space origin is (16v5/57r2)/5/2 (1 -2 / ) - 2 . The 
first nonzero coefficient of the Taylor series is 

C2-(^F/J/2) /=30==-(27r)-3 

X / [Ir(l-r)-1 dudvdw=-0.516, (A6) 

— IT 

where the evaluation of the integral is due to Watson.16 

Hence, to order J5'2, (3.30') follows. 

APPENDIX II 

To evaluate the zero-energy scattering length for two-
particle collisions we use the method of Dyson8 in his 
general theory of spin-wave interactions. We im­
mediately go over from the Hamiltonian (1.17) to the 
effective (non-Hermitian) Bose Hamiltonian for ideal 
spin waves: 

#Bose=Ek €k°/3kt0k~ (4M)-1 Eklm(rim
k~2,47k) 

X / W / W W m ^ # l + # 2 , (A7) 
16 G. N. Watson, Quart. J. Mech. Appl. Math. 10, 266 (1939). 

where the notation is generally the same as Dyson's 
except that we use f}\(5 for the creation, destruction 
operators which obey ordinary Bose commutation rules. 
The difference between Dyson's Eq. (48) and (A7) is 
the presence of the anisotropy term. In terms of the 
local Bose operators we have 

# 2 = 1 L/.a yfaj+iKij—Vj+i)2 

+ i U Z/.s %-%+5%+s*?;. (A8) 

A state containing two noninteracting particles with 
zero center-of-mass momentum can be written as 

|*m) = E * cosj> ( r * - r y ) > V | 0 ) , (A9) 

where y. is the wave vector for the relative motion of the 
two particles and |0) is the vacuum state for the rjj 
operators. Following Dyson, we construct a state \^r) 
representing the same two particles with interaction, 
satisfying the Schrodinger equation 

(H1+Hs)\^)=-2elP\^). (A10) 

A Green's function G(r;—ry) for Hi is defined by 

(H1-2e,°)G(r^r i) = 5 ( r i - r i ) , (All) 

which, when solved for G gives 

G (ti- ry) = M~l £ k exp[ik • (r<— ry) ] 
•PKeic0-^)]-1 . (A12) 

When the separation r= [ ry— r» | is large, G takes the 
asymptotic form 

G(r)^d exp(iyr)/4irr. (A12') 

For the state \ty) satisfying (A10) we take 

I ^ E ^ c o s f o - f o - r y ) ] 
+ E 8 5 8 G(ry - r i -5 )h < V|0) > (A13) 

which has the asymptotic form appropriate for an 
incident plus scattered wave: 

l*)~E.\i{cos[>(fv-ry)] 
+ (&^/4nr)Ea * , }*V10) . (A130 

The coefficients Bs, of course, will differ from those in 
Dyson's paper because of the presence of the anisotropy 
term in (A7). 

By virtue of (All), the Schrodinger equation (A10) 
gives an equation to determine the Bs: 

j B « « ( l - ^ ) c o s v - 5 - l + i ; A 5 A 

X{( l~^ ) [G(A-5)+G(A+5) ] -G(A)} 
= (1-A) co$(yh)-l-M-1 E A B A Ek exp(A- A) 

X(7^-7k)-1[^ cos(k.6)+(l-cosk.5)] , (A14) 
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where A is a nearest-neighbor lattice vector. Since we 
are interested in the scattering length at zero energy, we 
take the limit of (A 14) as y. —> 0 and use the fact that 
in this limit the B& cannot depend upon the direction of 
5. Thus, one finds that 

£a£s= _ 7 0 4 / [ l + ; i (YOM)"1 

XLkTk^To-Tk)-1]. (A15) 

Replacing the sum over k by an integral and remember­
ing (1.18'), this becomes 

E « B a = - 7 o 4 / [ l + 4 | C * | ] , - (A150 

1. INTRODUCTION 

A LARGE number of experiments have been carried 
out on the effect of a transverse magnetic field on 

the absorption of ultrasonic waves in pure metals at 
low temperatures, and the study of the angular variation 
of the magnetoacoustic oscillations has contributed 
significantly to the knowledge of the Fermi surfaces of 
many metals. Few results have so far been obtained on 
the dependence of the attenuation on a longitudinal 
magnetic field, however, partly because the results can­
not be so readily interpreted in terms of the geometrical 
parameters of the Fermi surface, and partly on account 
of the experimental difficulties involved. These measure­
ments do have a certain intrinsic interest, however, 
and the present work represents an attempt to under­
stand the coupling between acoustic waves and the 
conduction electrons in metals in the presence of a 
longitudinal magnetic field, while simultaneously ob­
taining some information about the Fermi surfaces of 
the metals studied. 

In the following sections the experimental technique 
used in these measurements is described briefly and the 
experimental results are presented. The theory of the 

* Work was performed in part at the Ames Laboratory of the 
U. S. Atomic Energy Commission. 

where 

-c 2 = [ [ [T(i-T)-1dudvdw=o.si6, (A6) 
(2TT)3 J J J 

as in Appendix I. Inserting (A15') into the asymptotic 
wave function, one obtains for the scattering length at 
zero energy, 

/o=^To^[47r(l+^|C2|)]-1 

= 3Adl2Tr(l+A\C2\)T
l, (A16) 

which is the expression given in the text, Eq. (3.33). 

attenuation of ultrasonic waves in longitudinal mag­
netic fields is then discussed, and finally the results are 
interpreted in the light of this theory. A brief account 
of some of the results of this work has already been 
published.1 

2. EXPERIMENTAL METHOD 

The absorption of 80-Mc/sec transverse and longi­
tudinal ultrasonic waves in pure lead and tin crystals 
in a longitudinal magnetic field was measured by means 
of a "pulse-echo" technique, the details of which have 
been described elsewhere.2 

The longitudinal and shear waves were generated by 
applying a high-frequency electromagnetic pulse across 
X- and F-cut quartz crystals, respectively, exciting 
them on their fifth harmonic. Ultrasonic reflections from 
the free end of the specimen were reconverted by the 
transducer into electrical signals which were amplified, 
demodulated, and displayed on a cathode-ray oscillo­
scope. In practice, because of the high attenuation in 
the pure crystals used in these experiments, only one 
reflection could be observed, in the normal state. The 

1 A. R. Mackintosh, in Proceedings of the Seventh International 
Conference on Low-Temperature Physics (University of Toronto 
Press, Toronto, 1960), p. 12. 

2 A. R. Mackintosh, Proc. Roy. Soc. (London) A271, 88 (1963). 
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The absorption of transverse and longitudinal ultrasonic waves has been studied as a function of the 
magnetic field applied along the direction of propagation in pure tin and lead crystals at liquid-helium tem­
peratures. At low fields, the attenuation of both transverse and longitudinal waves exhibits oscillations 
approximately periodic in reciprocal field, which are ascribed to electron orbits which execute a periodic mo­
tion along the field direction. The attenuation of transverse waves in tin shows regions of rapid decrease 
with magnetic field, which are interpreted as the absorption edges first predicted by Kjeldaas. In higher 
fields, the absorption of longitudinal waves appears to saturate at a nonzero value, while that of the trans­
verse waves in tin appears generally still to be decreasing with field at fields of about 10 kG. 


